

A GERMACROLIDE FROM *GOCHNATIA HYPOLEUCA* AND ITS TRANSFORMATION INTO A MELAMPOLIDE*

EMMA MALDONADO, ADRIÁN M. FLORES and ALFREDO ORTEGA

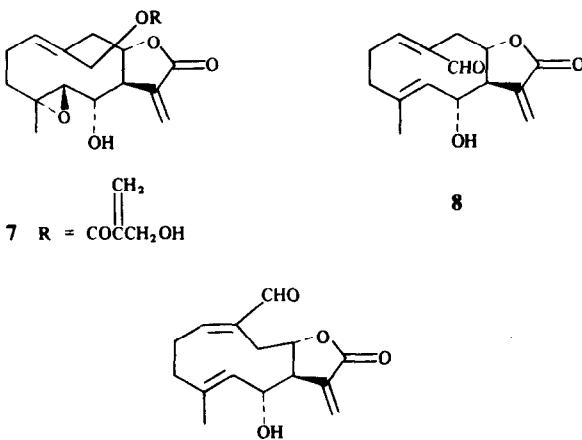
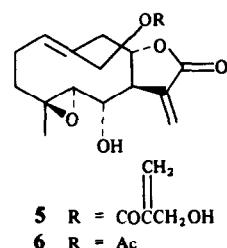
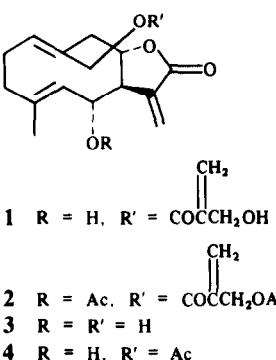
Instituto de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior, Coyoacán, 04510 México, D.F.

(Revised received 2 April 1987)

Key Word Index—*Gochnatia hypoleuca* subsp. *obtusata*; Compositae, sesquiterpene lactones; gochnatolide; germacr-8,12-olide; melampolide.

Abstract—Chemical analysis of *Gochnatia hypoleuca* subsp. *obtusata* afforded, in addition to several known compounds, the new sesquiterpene lactone, gochnatolide. Hydrolysis and subsequent allylic oxidation of gochnatolide gave a germacrolide which was easily isomerized into a melampolide under acid treatment. Thermal isomerization of gochnatolide was also carried out.

INTRODUCTION




During our chemical research on *Gochnatia* genus (Compositae, Mutisieae, Gochnatinae) [1], we have studied *Gochnatia hypoleuca* (DC) A. Gray subsp. *obtusata* (Blake) Cabrera. In previous works on these species, the subspecies were not specified [2, 3]. Several triterpenes were isolated from the roots [2] while guaianolides, germacraneolides and triterpenes were extracted from aerial parts [3]. Now we have isolated from *G. hypoleuca* subsp. *obtusata*, a new germacr-8,12-olide, which we have named gochnatolide (1). A derivative of this compound was chemically and thermally transformed into a melampolide. So far only photochemical [4] and chemical methods [5, 6] to induce this transformation had been described.

RESULTS AND DISCUSSION

Column chromatography of the extracts from aerial parts of *G. hypoleuca* afforded the known triterpenes erythrodiol, β -amyrin and oleanolic acid, as well as the flavone luteolin. They were characterized by comparison of their physical constants with those described in the literature and also by formation of some derivatives (see Experimental).

Gochnatolide (1), $C_{19}H_{24}O_6$ (MS), mp 107–109°, was an α, β -unsaturated- γ -lactone (IR bands at 1758 and 1655 cm^{-1}) possessing two hydroxyl groups (IR 3611 cm^{-1}) as was demonstrated by formation of the diacetyl derivative 2. The 1H NMR spectrum of 1 ($CDCl_3$, room temp.) showed unresolved signals indicative of a *trans*-fused germacr-8,12-olide or a *cis,cis*-germacranolide, both of which can exist as a mixture of conformational isomers in solution [7]. The similarity of the 1H NMR spectrum mentioned before with that of the 14-acetoxydesacetyl laurenobiolide 4 [8], which was also isolated for us from a *Perymenium* species [9] constituted

an indication that the new lactone differed from 4 only in the nature of the ester group. The 1H NMR spectrum of 1 determined in $DMSO-d_6$ solution at 140° (Table 1) was clear and also was quite similar to that of 4 determined in

* Contribution No. 864 of the Instituto de Química, UNAM.

the same conditions [9]. This, together with the above mentioned data allowed us to propose the structure of gochnatolide as is depicted in **1**.

Compound **1** upon oxidation with *m*-chloroperbenzoic acid gave a mixture of the epoxides **5** and **7** which arise as a consequence of its conformational flexibility. Compound **5** was an ester analogous to 14-acetoxy-4 β ,5 α -epoxydesacetyl laurenobiolide (**6**) [8] as was demonstrated by comparison of their respective ^1H NMR spectra. Although other authors stated that **6** [8] and its metacryloyl, tigloyl and isobutyroyl analogues [3] were conformationally flexible at room temperature, we found that **5** gave a clear ^1H NMR spectrum (in CDCl_3) at this temperature thus indicating the presence of a single conformer. The same is true for **6** [9]. Furthermore, the ^1H NMR spectrum of **5** was determined in CDCl_3 at 57° in order to compare it with that of **6** reported under these conditions [3]. In our case no changes were observed confirming the rigidity of the molecule. In these spectra the $J_{5,6} = 4$ Hz and the $J_{6,7} = 12$ Hz indicated an equatorial-axial and axial-axial relationship between H-5, H-6 and H-6, H-7, respectively. On the other hand, a *trans*-dixial disposition of H-5, H-6 and H-6, H-7 was deduced from the $J_{5,6} = 9$ Hz and $J_{6,7} = 10$ Hz values exhibited by compound **7** in its ^1H NMR spectrum. It also demonstrated a single conformer at room temperature. From these results it is clear that the presence of a 4,5-epoxy group restrains the conformational mobility in compounds **5**-**7**.

Alkaline hydrolysis of **1** afforded the diol **3**, which was oxidized with manganese dioxide to give the hydroxy aldehyde **8**. Its ^1H NMR spectrum (CDCl_3 , room temp.) showed three aldehydic proton signals whose chemical shifts (δ 9.99, 9.94 and 9.89) indicated the presence of three conformations for a molecule with an aldehydic function conjugated with a *trans*-double bond, as depicted in **8**. An additional singlet signal at δ 9.46 was observed in the same spectrum and this revealed an incipient isomerization of the germacrolide **8** into the melampolide **9**, probably due to the acidity of the CDCl_3 .

The ^1H NMR spectrum of **8** in $\text{DMSO}-d_6$ at room temp. confirmed the existence of three conformations for this compound (three aldehydic proton signals at δ 10.01, 9.93 and 9.88 and three vinylic methyl signals at 1.65, 1.54 and 1.35). The above data revealed that the chemical shift of the aldehydic protons was not substantially affected with the solvent change. Thus, the spectrum determined at 140°, which showed a single set of signals, confirmed the proposed structure **8**. The *E*-geometry of the 1(10)-double bond was inferred from the chemical shifts of H-1 (δ 6.58, *t*, $J = 9$ Hz) and H-14 (9.93, *s*).

When the temperature of the probe reached 160°, a new aldehydic proton signal appeared indicating a partial isomerization of the 1(10)-double bond. After 20 min the transformation of the germacrolide **8** into the melampolide **9** was completed. In the ^1H NMR spectrum of the melampolide **9** ($\text{DMSO}-d_6$, 160°) the signal for H-1 was triplet at δ 6.68 ($J = 8$ Hz) while H-14 appeared at 9.47 as a singlet. The recovered sample of the previous experiment gave a well defined ^1H NMR spectrum in CDCl_3 solution at room temperature. In this spectrum the signals for H-1 and H-14 showed the chemical shifts characteristic for an aldehyde conjugate with a *cis*-double bond (Table 1). The isomerization also occurred when a CHCl_3 solution of **8** was left to stand for an hour and it was accelerated upon heating. Finally, chemical transform-

ation of **8** into **9** was achieved upon addition of hydrochloric acid to an acetone solution of **8**.

EXPERIMENTAL

Gochnatia hypoleuca (DC) A. Gray subsp. *obtusata* (Blake) Cabrera, was collected in Oaxaca, México (specimen deposited at the Herbarium of the Instituto de Biología, U.N.A.M., MEXU 215836). The ground dried aerial parts (1 kg) were extracted with hexane (2 l), $\text{CHCl}_3\text{-Me}_2\text{CO}$ 4:1 (3 l) and Me_2CO (2 l) to give 32.6, 34.5 and 29 g of extracts, respectively. The hexane residue was adsorbed on celite and fractioned by CC (silica gel, Merck G, 8 cm diameter \times 15 cm height, operated with vacuum) using as eluent hexane-EtOAc gradient solvent system. The first fractions eluted with hexane-EtOAc (9:1) yielded after crystallization 1.249 g of β -amyrin, mp 191–193° [lit. [10] mp 197°], which was further characterized as the acetyl derivative, mp 235–236° [lit. [10] mp 236°]. The subsequent fractions eluted with hexane-EtOAc (9:1) afforded, after crystallization, 0.204 g of erythrodiol, mp 222–224° [lit. [10] mp 232°]. This compound was converted into its diacetate, mp 183–185° [lit. [10] mp 187°] and correlated with oleanolic acid through the formation of 3-oxo-oleanolic acid. The $\text{CHCl}_3\text{-Me}_2\text{CO}$ extract was adsorbed on celite and fractioned as above. Fractions eluted with hexane-EtOAc (17:3) afforded 0.21 g of erythrodiol. Fractions eluted with hexane-EtOAc (4:1) gave 0.353 g of oleanolic acid, mp 299–301° [lit. [10] mp 306–308°]. The Me ester of this acid was obtained and compared with an authentic sample. Fractions eluted with hexane-EtOAc (11:9) yielded, after crystallization from Me_2CO -hexane, 5.48 g of gochnatolide (**1**), mp 107–109°, $[\alpha]_D^{25} + 8.89$ (*c*, 0.169, CHCl_3); UV (EtOH) 211 nm (*e*, 17300); IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3611, 1758, 1711, 1655, 1633, 1273, 1143, 1025, 962. CIMS (CH_4) *m/z* (rel. int.): 349 [$\text{M} + 1$]⁺ ($\text{C}_{19}\text{H}_{24}\text{O}_6$, 1), 331 (56), 247 (30), 229 (100), 201 (20), 183 (17), 151 (26), 133 (74), 121 (13).

The Me_2CO extract was fractioned in the same way as above. Fractions eluted with hexane-EtOAc (3:2) gave 78 mg of **1**. From fractions eluted with hexane-EtOAc (11:9), 72 mg of luteolin (mp 330°, lit. [11] mp 331°) were isolated.

Diacetyl gochnatolide (**2**). To a soln of 100 mg of **1** in 1 ml of pyridine were added 2 ml of Ac_2O . The reaction mixture was kept for 12 hr at room temp. After the usual work up 81.6 mg of **2** were obtained as a yellow oil. IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 1760, 1737, 1657, 1644, 1442, 1371, 1272, 1148, 1020, 960. MS *m/z* (rel. int.): (432 [M]⁺, $\text{C}_{23}\text{H}_{28}\text{O}_8$, unobserved), 390 (0.1), 373 (2), 331 (0.4), 289 (6), 228 (16), 213 (7), 200 (6), 127 (28), 43 (100).

Hydrolysis of gochnatolide (**1**). A mixture of 100 mg of **1** and 180 mg NaOH in 10 ml H_2O was stirred by 1 hr at room temp. neutralized with 10% H_2SO_4 and extracted with EtOAc. The organic layer was washed with H_2O , dried and concd *in vacuo* to yield 63 mg of **3** as a yellow gum which could not be induced to crystallize. UV (MeOH) 204 nm (*e* = 12700), $[\alpha]_D^{25} + 29.8$ (*c*, 0.179, EtOH), IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3600, 1756, 1653, 1600, 1270, 1140, 1070, 958. MS *m/z* (rel. int.): 264 [M]⁺ ($\text{C}_{15}\text{H}_{20}\text{O}_4$, 1), 246 (5), 228 (7), 213 (7), 200 (7), 188 (12), 133 (14), 117 (37), 105 (46), 91 (58), 84 (100), 83 (87), 67 (47), 55 (67).

Epoxidation of **1**. To a soln of 110 mg of **1** in 10 ml CHCl_3 were added 75 mg *m*-CPBA. After 5 min the solvent was evapd and the residual gum (two spots on TLC) was chromatographed over a silica gel column using as eluent $\text{CHCl}_3\text{-Me}_2\text{CO}$ (9:1). The less polar product **5** was obtained as a colourless oil (70 mg). IR $\nu_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3572, 1762, 1712, 1656, 1628, 1358, 1275, 1141, 955 and 987; MS *m/z* (rel. int.): 364 [M]⁺ ($\text{C}_{19}\text{H}_{24}\text{O}_7$, 0.5), 280 (4), 262 (2), 215 (5), 177 (12), 109 (22), 105 (16), 91 (21), 85 (100), 84 (39), 69 (37), 67 (30), 55 (24), 43 (41). The more polar compound **7**

Table 1. ^1H NMR spectral data of compounds 1–3, 5, 7–9 (80 MHz, $\text{DMSO}-d_6$, 140° TMS as internal standard)

H	1	2	3	5*	7*	8	9	9*
1	5.35 <i>t br</i> (8)†	5.37 <i>t br</i> (7.5)	5.06 <i>t br</i> (7.5)	5.57 <i>t br</i> (8)	5.68 <i>t br</i> (8)	6.58 <i>t</i> (9)	6.68 <i>t</i> (8)	6.58 <i>t br</i> (8)
5	4.97 <i>d br</i> (8)	4.96 <i>d br</i> (8)	4.94 <i>d br</i> ‡ (8)	2.76 <i>d</i> (4)	2.67 <i>d</i> (9)	4.75 <i>m</i> ‡ (10)	5.09 <i>d br</i> (10)	4.98 <i>d br</i> (10)
6	4.06 <i>dd</i> (9.5,8)	4.19 <i>dd</i> (9.5,8)	4.14 <i>dd</i> ‡ (10.8)	4.10 <i>dd</i> (11.4)	3.44 <i>dd</i> (10.9)	4.00 <i>m</i> ‡ (10.9)	4.17 <i>t</i> (10)	4.25 <i>t</i> (10)
7	2.89 <i>m</i>	3.17 <i>m</i>	2.92 <i>m</i>	3.05 <i>m</i>	3.08 <i>m</i>			2.51 <i>m</i> ‡
8	4.15‡ (11.4)	4.32 <i>dt</i> (11.4)		4.58 <i>ddd</i> (12.5,3.5)	4.12 <i>ddd</i> (11.5,3)	4.75 <i>m</i> ‡ (12.6)	3.81 <i>dd</i> (12.6)	3.87 <i>dd</i> (13.7)
9	2.76 <i>dd</i> (14.4)		2.73 <i>dd</i> ‡ (13.3,5)		2.93 <i>d br</i> (14)			
13	6.10‡ (3.1)	6.13 <i>dd</i> (3.1)	6.14 <i>dd</i> ‡ (3.1,8)	6.39 <i>dd</i> (3.1,5)	6.44 <i>dd</i> (3.1,5)	6.14 <i>dd</i> ‡ (3.1,5)		6.31 <i>dd</i> (3.5,1)
							6.08 <i>d</i> (2H)	
13	6.10‡ (2.4,1)	5.80 <i>dd</i> (2.5,1.8)	6.06 <i>dd</i> ‡ (2.5,1.8)	6.08 <i>dd</i> (2.5,1.5)	6.25 <i>s</i> (2.5,1.5)	6.06 <i>dd</i> ‡ (2.5,1.5)	(3)	6.10 <i>dd</i> (3.1)
14	4.63 <i>s</i>	4.68 <i>s</i>	3.93 <i>s</i>	4.71 <i>s</i>	4.75 <i>s</i>	9.93 <i>s</i>	9.47 <i>s</i>	9.46 <i>s</i>
15	1.62 <i>d</i> (1.5)	1.65 <i>d</i> (1.5)	1.59 <i>d</i> (1.5)	1.46 <i>s</i>	1.29 <i>s</i>	1.57 <i>d</i> (1.5)	1.70 <i>d</i> (1.5)	1.74 <i>d</i> (1.5)
OCOR	4.15 <i>t br</i> (1.5)	4.72 <i>dd</i> (1.5,1)		4.29 <i>s</i>	4.33 <i>s</i>			
	5.22 <i>dt</i> (2.1,5)	5.85 <i>dt</i> (1.5,1)		5.87 <i>dt</i> (1.5,1)	5.88 <i>dt</i> (1.5,1)			
	6.10‡ (1,1)	6.21 <i>dt</i> (1,1)		6.19 <i>d br</i> (1)	6.27 <i>d br</i> ‡ (1)			
OAc		2.23 <i>s</i> (6H)						

*Run in CDCl_3 at room temp.†*J* values (Hz) are given in parentheses.

‡Superimposed signal.

was also obtained as a colourless oil (41 mg). IR $\nu_{\text{max}}^{\text{CHCl}_3}$, cm^{-1} : 3592, 1762, 1712, 1655, 1635, 1272, 1142, 1037, 964 and 894. CIMS (CH_4) m/z (rel. int.): 365 [$\text{M} + 1$]⁺ $\text{C}_{19}\text{H}_{24}\text{O}_7$, 23), 321 (8), 281 (48), 263 (59), 245 (100), 227 (37), 217 (34), 179 (24), 167 (26), 149 (69), 121 (41).

Allylic oxidation of 3. To a soln of 90 mg of 3 in 15 ml of CHCl_3 were added 900 mg of MnO_2 . After 10 min the reaction mixture was filtered off and the solvent was eliminated under vacuum. From the residue compound 8 was crystallized. Mp 163–165° (Me_2CO -hexane); IR $\nu_{\text{max}}^{\text{KBr}}$, cm^{-1} : 3503, 1739, 1656, 1454, 1276, 1153, 1033, 972, 874; $\nu_{\text{max}}^{\text{CHCl}_3}$, cm^{-1} : 3600, 1758, 1708, 1668, 1270, 1135, 1025, 955, 878 cm^{-1} . MS m/z (rel. int.): 262 [$\text{M}]^+$ ($\text{C}_{15}\text{H}_{18}\text{O}_4$, 1), 244 (6), 234 (10), 215 (19), 179 (17), 133 (22), 105 (36), 91 (28), 84 (100), 83 (63), 67 (23), 55 (28).

Acid isomerization of 8. Traces of conc HCl were added to a soln of 8 (11.4 mg) in Me_2CO (3 ml). After 5 min the solvent was eliminated and 11 mg of 9 were obtained as a yellow oil. IR $\nu_{\text{max}}^{\text{CHCl}_3}$, cm^{-1} : 3610, 1760, 1711, 1687, 1639, 1449, 1364, 1271, 1238, 1144, 1023, 961, 876. MS m/z (rel. int.): 262 [$\text{M}]^+$ ($\text{C}_{15}\text{H}_{18}\text{O}_4$, 1) 244 (1), 233 (5), 215 (3), 179 (13), 161 (27), 133 (17), 105 (36), 91 (33), 84 (100), 83 (54), 55 (61), 39 (94).

Acknowledgements—We are indebted to M. Sc. Jose Luis Villaseñor of Instituto de Biología, UNAM, for the identification of the plant material. We also thank to M. Sc. Jorge A. Cárdenas for technical assistance.

REFERENCES

1. Ortega, A. and Maldonado, E. (1984) *Phytochemistry* **23**, 1507.
2. Dominguez, X. A., Franco, K. and Cano, G. (1978) *Rev. Latinoam. Quim.* **9**, 214.
3. Bohlmann, F., Zdero, C., Schmeda-Hirschmann, G., Jakupovic, J., Dominguez, X. A., King, R. M. and Robinson, H. (1986) *Phytochemistry* **25**, 1175.
4. Reijnders, P. J. M., van Putten, R. G., de Haan, J. W., Konig, H. N. and Buck, H. M. (1980) *Netherlands Chem. Soc.* **99**, 67.
5. Krishnan, S., Paknikar, S. K. and Bhattacharyya, S. C. (1978) *J. Indian Chem. Soc.* **55**, 1142.
6. Haruna, M. and Ito, K. (1981) *J. Chem. Soc. Chem. Comm.* 483.
7. Fischer, N. H., Olivier, E. J. and Fischer, H. D. (1979) *Prog. Chem. Org. Nat. Prod.* **38**, 47.
8. Bohlmann, F., Jakupovic, J., Ahmed, M. and Schuster, A. (1983) *Phytochemistry* **22**, 1623.
9. Maldonado, E., Mayorga, L. and Ortega, A. (1987) *Phytochemistry* **26**, 205.
10. Simonsen, J. L. and Ross, W. K. J. (1957) *The Terpenes*, V. IV and V. Cambridge University Press Cambridge.
11. Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) *The Systematic Identification of Flavonoids*. Springer, New York.